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Abstract. The nature of chaos is elusive and disputed, however it can be 

connected to sensitivity to initial conditions caused by nonlinearity of the 
equations describing chaotic phenomena. A nowhere-near comprehensive list of 
such equations can still be shown: the Boltzmann equation, Ginzburg-Landau 
equation, Ishimori equation, Korteweg-de Vries equation, Landau-Lifshitz-Gilbert 
equation, Navier-Stokes equation, and many more. This disproportionality 
between input and output creates an analytically-difficult situation, one that is 
complicated both algebraically and numerically – however, the study of equations 
that are both simple and chaotic may yield useful connections between algebraic 
complexity and chaos. Such connections can be used to determine the simplest 
possible chaotic function, which can be used as a “chaotic operator” for various 
non-chaotic or chaotic functions, thus reducing the problem of chaos to one based 
strictly on algebra. 
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1. Introduction  
 
The study of the behaviour of the atmosphere, and of other complex 

systems, has been a long and difficult endeavour; numerous previous studies have 
attempted to quantify and to explain complex and seemingly-random phenomena. 
In attempting to do so, they have consistently found that the typical tools of 
mathematics and physics are insufficient in solving the problem: notions such as 
“non-linearity”, “chaos”, “randomness” and yet also “coherence”, blur the lines 
and create confusion. However, the coupling and expanding of such notions 
means that many of these questions could be, at least partially, settled – and 
practical solutions can be found so that one day, finally, we may understand and 
even use to our full advantage many of these complicated phenomena. 

 
2. Common and Uncommon Chaotic Systems 

 
The nature of chaos regarding algebraic complexity is still unclear, 

especially since multiple cases of relatively simple differential equation systems 
have been found to exhibit highly chaotic behaviour. Following the Ruelle-
Takens theory of turbulence, it is found that such systems regularly produce what 
have been named “strange attractors”, which are attractors with a fractal structure. 
Referring once again to simplicity producing chaos, Lorenz’s studies must be 
brought up next. The Lorenz system was initially derived from an Oberbeck-
Boussinesq approach to atmospheric dynamics – which is to say that the 
atmosphere is a mechanically incompressible but thermally compressible system. 
Obtaining the equations is a question of developing a two-dimensional flow of 
fluid of uniform depth 𝐻𝐻, with an imposed temperature difference ∆𝑇𝑇, under 
gravity 𝑔𝑔, with buoyancy 𝛼𝛼, thermal diffusivity 𝜅𝜅, and kinematic viscosity 𝜐𝜐: 

  
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛻𝛻2𝜙𝜙) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛻𝛻2𝜓𝜓) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛻𝛻2𝜓𝜓) + 𝜐𝜐𝛻𝛻2(𝛻𝛻2𝜙𝜙) + 𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

        (1) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕
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𝐻𝐻
𝜕𝜕𝜕𝜕
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                            (2) 

 
where 𝜓𝜓 is a stream function, defined such that the velocity components 𝑢𝑢 = (𝑢𝑢,𝑤𝑤) 
of the fluid motion are (Tabor, 1989): 

 
𝑢𝑢 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,𝑤𝑤 = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                                            (3) 

 
Then, it can be noticed that periodic solutions of the form: 
 

𝜓𝜓 = 𝜓𝜓0 sin �𝜋𝜋𝜋𝜋𝜋𝜋
𝐻𝐻
� sin �𝜋𝜋𝜋𝜋

𝐻𝐻
�                                        (4) 
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grow for Rayleigh numbers larger than a critical value, 𝑅𝑅𝑅𝑅 > 𝑅𝑅𝑅𝑅𝑐𝑐 (Tabor, 1989).  
By including the terms 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 where 𝑋𝑋 is proportional to convective intensity, 𝑌𝑌 
to the temperature difference between descending and ascending currents, and 𝑍𝑍 
to the difference in vertical temperature profile from linearity, the following 
equations are obtained: 

 
𝑋̇𝑋 = 𝜎𝜎(𝑌𝑌 − 𝑋𝑋), 𝑌̇𝑌 = −𝑋𝑋𝑋𝑋 + 𝑟𝑟𝑟𝑟 − 𝑌𝑌, 𝑍̇𝑍 = 𝑋𝑋𝑋𝑋 − 𝑏𝑏𝑏𝑏                   (5) 

 
And where: 

 

𝜎𝜎 ≡ 𝜐𝜐
𝜅𝜅

= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑃𝑃                                 (6) 

 
𝑟𝑟 ≡ 𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐
=  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
                               (7) 

 
And 𝑏𝑏 is a geometric factor. The Rayleigh number can be defined in the following 
manner: 

 

𝑅𝑅𝑅𝑅 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝐺𝐺𝐺𝐺 ∙ 𝑃𝑃𝑃𝑃       (8) 

 
Where: 

 

𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

                                    (9) 

 
and 𝐺𝐺𝐺𝐺, also named the Grashof number is: 

 
𝐺𝐺𝐺𝐺 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
                                            (10) 

 
The initial parameters used are 𝑏𝑏 = 8

3
, 𝜎𝜎 = 10, 𝑟𝑟 = 28, and the onset of 

chaos is at 𝑟𝑟 ≳ 24.74 (Grassberger and Procaccia, 2004). If 𝑟𝑟 < 0 there results 
only one equilibrium point at the origin; this corresponds to no convection at all. 
The chosen parameters give a fractal dimension of 𝐷𝐷𝐹𝐹 ≅ 2.06 (Grassberger and 
Procaccia, 2004). The critical points at (0, 0, 0) correspond to no convection 
while the critical points found at ��𝑏𝑏(𝑟𝑟 − 1),�𝑏𝑏(𝑟𝑟 − 1),  𝑟𝑟 − 1 � mean steady 
convection. 

The system is represented in its entirety in Fig. 1, with the initial points 
(1,1,1) and the original initial parameters. 5000 iterations of the equations used 



24                                          Alin Iulian Roşu et al. 
 

 

to construct the model are plotted to represent the attractor, each iteration being 
considered as a time step equal to 0.01. 

 

 
 

Fig. 1 − Lorenz system after 5000 iterations; initial parameters: 
 𝑏𝑏 = 8

3
, 𝜎𝜎 = 10, 𝑟𝑟 = 28; initial points: (1, 1, 1). 

 
The Lorenz attractors have been a source of confusion and fascination in 

the fields of chaos and nonlinearity, mostly because it is a relatively simple 
system. Being composed of three first-order differential equations, and having 
only three parameters, one cannot call it “complicated” from an algebraic 
perspective. The equations describing the Malkus wheel, which were the first 
attempt to transpose the Lorenz attractor equations into reality, are slightly 
different, yet even simpler than the Lorenz system: 

 
𝑥̇𝑥 = 𝑦𝑦 − 𝑓𝑓𝑓𝑓, 𝑦̇𝑦 = −𝜆𝜆𝜆𝜆 + 𝑥𝑥𝑥𝑥, 𝑧̇𝑧 = −𝜆𝜆𝜆𝜆 − 𝑥𝑥𝑥𝑥 + 𝜆𝜆                  (11) 

 
where 𝑥𝑥 represents the angular velocity, 𝑦𝑦 and 𝑧𝑧 are center of mass coordinates 
(Lorenz and Haman, 1996). This time, the system presents two parameters: 𝜆𝜆 
which quantifies the cup leakage and 𝑓𝑓 which is the inverse of the time constant 
for the slowdown of the wheel. With certain values, the system proves itself to be 
chaotic as well as easy to construct as an experimental setting.  

 
3. The Minimal Algebraic Complexity of Chaotic Systems  

 
An even simpler Lorenz-type system can be constructed through 

rescaling to create a “diffusionless Lorenz system”, however any other 
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simplification attempts has been proven to lead to a loss of “chaoticity” for this 
system type (Sprott, 2010; van der Schrier and Maas, 2000). Even so, a different 
system can be considered with more basic qualities i.e. a single quadratic 
nonlinearity: 

 
𝑥̇𝑥 = −𝑦𝑦 − 𝑧𝑧, 𝑦̇𝑦 = 𝑥𝑥 + 𝑎𝑎𝑎𝑎, 𝑧̇𝑧 = 𝑏𝑏 + 𝑧𝑧(𝑥𝑥 − 𝑐𝑐)                    (12) 

 
This is the Rössler system, where the original parameters are 𝑎𝑎 = 𝑏𝑏 =

0.2, 𝑐𝑐 = 5.7 (Rössler, 1976). Its dimension is 𝐷𝐷𝐹𝐹  =  2.0132 for the given 
parameters, but the maximum possible dimension is 𝐷𝐷𝐹𝐹  =  2.1587 with 𝑎𝑎 =
0.6276, 𝑏𝑏 = 0.798, 𝑐𝑐 = 2.0104 (Rössler, 1979). Now, for many years, this and 
the Lorenz systems were regarded as the simplest examples of chaos in 
autonomous dissipative systems of ordinary differential equations. However, a 
“less famous” simpler system exists, also credited to Rössler: 

 
𝑥̇𝑥 = −𝑦𝑦 − 𝑧𝑧, 𝑦̇𝑦 = 𝑥𝑥, 𝑧̇𝑧 = 𝑎𝑎(𝑦𝑦 − 𝑦𝑦2) − 𝑏𝑏𝑏𝑏                       (13) 

 
This system, called the “Rössler prototype-4”, presents only six terms, a 

single quadratic nonlinearity, and only two parameters, exhibiting chaos for 𝑎𝑎 =
𝑏𝑏 = 0.5 (Rössler, 1979). It, in turn, is one of 18 other similar systems found 
through an extensive numerical search – some of these have very interesting 
properties (Sprott, 2010). The third of them: 

 
𝑥̇𝑥 = −𝑦𝑦, 𝑦̇𝑦 = 𝑥𝑥 + 𝑧𝑧, 𝑧̇𝑧 = 𝑥𝑥𝑥𝑥 + 3𝑦𝑦2                           (14) 

 
Wherein 𝑥𝑥0 = 0.6, has the distinct property of being dissipative but time-
reversible with a symmetric pair of strange attractors that exchange role when 
time is reversed (Sprott, 2010). This interesting attribute is not to be neglected: 
the fact that a system can be time-reversible yet dissipative at the same time hints 
towards soliton-like qualities. The fourth: 

 
𝑥̇𝑥 = 𝑦𝑦𝑦𝑦, 𝑦̇𝑦 = 𝑥𝑥 − 𝑦𝑦, 𝑧̇𝑧 = 1 − 𝑥𝑥𝑥𝑥                                 (15) 

 
Wherein 𝑥𝑥0 = −1 and 𝑦𝑦0 = 1, has been shown to exhibit bistability, hysteresis, 
and highly incoherent phase dynamics.  

Given the richness of content that one can access when investigating such 
systems, a natural question arises: is it possible to redefine the systems as 
equations containing just one differentiable parameter, and is it possible to 
construct a hierarchy of such equations? To answer this question, one must 
consider the fact that, in all of these systems, we are presented with three first-
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order ordinary differential equations, the equivalent of which would be a single 
third order ordinary differential equation (Chlouverakis and Sprott, 2005). This 
is called a “jerk” equation, which is generally of the form: 

 
𝑥𝑥 = 𝑓𝑓(𝑥̈𝑥, 𝑥̇𝑥,𝑥𝑥 )                                              (16) 

 

Where the “jerk”, in general, is the third derivative of position with 
respect to time. Given that the previously illustrated systems have been shown to 
be some of the simplest possible differential equation systems that produce chaos, 
we would expect that the jerk would be the lowest possible position derivative 
for which an ordinary differential equation with smooth continuous functions can 
exhibit chaos (Sprott, 2010). Any explicit ordinary differential equation can be 
cast in the form of a system of coupled first-order ordinary differential equations, 
but the reverse is not always true. However, both the Lorenz and Rössler systems 
can be written in jerk form (Sprott, 2010): 

 
𝑥𝑥 + �1 + 𝜎𝜎 + 𝑏𝑏 − 𝑥̇𝑥

𝑥𝑥
� + �𝑏𝑏(1 + 𝜎𝜎 + 𝑥𝑥2)− (1 + 𝜎𝜎) 𝑥̇𝑥

𝑥𝑥
� 𝑥̇𝑥 − 𝑏𝑏𝑏𝑏(𝑟𝑟 − 1 − 𝑥𝑥2)𝑥𝑥 = 0 

(17) 

And: 
 

𝑦𝑦 + (𝑐𝑐 − 𝑎𝑎)𝑦̈𝑦 + (1 − 𝑎𝑎𝑎𝑎)𝑦̇𝑦 + 𝑐𝑐𝑐𝑐 − 𝑏𝑏 − (𝑦̇𝑦 − 𝑎𝑎𝑎𝑎)(𝑦̈𝑦 − 𝑎𝑎𝑦̇𝑦 + 𝑦𝑦) = 0      (18) 

 
Both of these equations, although functional, are quite unwieldy – a study 

has shown, however, that all of the 18 previously mentioned chaotic systems can 
be represented in a similar manner, with jerk equations of increasing complexity 
(Eichhorn et al., 1998). The simplest of these is: 

 
𝑥𝑥 + 𝑎𝑎𝑥̈𝑥 − 𝑥̇𝑥 + 𝑥𝑥 = 0                                          (19) 

 
Which is chaotic for 𝑎𝑎 = 2.02, and for 𝑥𝑥(0) = 5, 𝑥̇𝑥(0) = 2, and 𝑥̈𝑥(0) =

0, presenting a highest Lyapunov exponent equal to 0.0486 (Eichhorn et al., 
1998; Sprott, 2010). Now, if one accepts that quadratic forms are the simplest 
possible nonlinear forms, and the jerk is the lowest derivative for which chaos 
occurs in such systems, then the previous equation must be the algebraically-
simplest possible continuous chaotic system. Any polynomial with fewer terms 
would have no adjustable parameters, disabling the range of its possible dynamics 
– in fact, it has been proven quite rigorously that there can be no simpler chaotic 
system (Fu and Heidel, 1997). 

Interestingly, the above-mentioned system can actually be solved; 
assuming 𝑎𝑎 = 2.02: 
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𝑥𝑥(𝑡𝑡) = 𝑐𝑐1𝑒𝑒−2.56253𝑡𝑡 + 𝑒𝑒0.271263𝑡𝑡[𝑐𝑐2 sin(0.562722𝑡𝑡) + 𝑐𝑐3 cos(0.562722𝑡𝑡)] 

(20) 

We may now attempt to actually determine the values of the three 
constants, given our chaotic initial values: 

 
𝑥𝑥(0) = 𝑐𝑐1 + 𝑐𝑐3 = 5                                          (21) 

 
Thus: 

 
𝑐𝑐1 = 5 − 𝑐𝑐3                                               (22) 

 
Then: 

 
𝑥̇𝑥(0) = −2.5623𝑐𝑐1 + 0.271263𝑐𝑐3 + 0.562722𝑐𝑐2 = 2            (23) 

 
Which yields: 

 
𝑐𝑐3 = 5.22716− 0.19859𝑐𝑐2                                 (24) 

  
Finally: 

 
𝑥̈𝑥(0) = 6.56538𝑐𝑐1 − 0.2430724𝑐𝑐3 + 0.30531𝑐𝑐2 = 0           (25) 

  
Which, by replacement, will give us the values of the constants and the 

final form of the function: 
 

𝑥𝑥(𝑡𝑡) = 0.10378 ∙ 𝑒𝑒−2.56253𝑡𝑡 + 𝑒𝑒0.271263𝑡𝑡[4.89622 ∙ sin(0.562722𝑡𝑡) +

1.66644 ∙ cos(0.562722𝑡𝑡)]                                                                                                    (26) 
  
The equation above thus has the “honour” of being the solution to the 

simplest possible continuous chaotic system. It might seem tiresome and trivial 
to write out these values with so many decimals, however, one must remember 
that this is a chaotic function that we are working with: almost every single 
decimal counts. Here, “chaoticity” becomes apparent upon consulting the 
semilogarithmic graph of the equation: ignoring negative values, the system 
seems to be oscillating in ever-increasing orbits; however, neither the period, 
nor the shapes, nor the scaling of these orbits seem to have a periodic character 
(Fig. 2). 
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Fig. 2 − Semilogarithmic plot of the solution of the simplest possible chaotic system. 
 

4. Conclusion 
 
The fact that the obtained equation is not unimodal complicates our 

analysis; the Schwartzian of a unimodal map, if negative, automatically points to 
chaoticity. In any case, resulting from the discussion above, there can be no 
chaotic system involving only two first-order, ordinary differential equations 
(Coddington and Levinson, 1955). The fact that such simple “mathematical 
nuclei of chaos” even exist is fascinating, and it might be used to produce a future 
theory of “chaoticity” as resulting from the coupling of minimally-complex 
“units” of chaotic equations; first, however, one would need to have a conclusive 
answer to the following question: does more complexity automatically equal 
more chaos? 

In conclusion, the existence of minimally-complex chaotic equations 
reveals multiple possibilities in chaos theory, perhaps through the development 
of a “chaotic operator” developed through Green’s functions that, when applied 
to a non-chaotic function produces a chaotic one, and vice versa when applied 
inversely. The postulated existence of such an operator would algebraically 
explain chaotic behaviours of all kind as operator manifestations, and would 
reveal much about methods to control and even harness chaoticity in various 
processes. 
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STUDIUL ȘI IDENTIFICAREA APLICAŢIILOR FUNCȚIILOR 

 HAOTICE MINIMAL COMPLEXE  
 

(Rezumat) 
 

Natura haosului este disputată și dificil de descris, dar acesta poate fi conectat 
cu senzitivitatea la condițiile inițiale cauzate de nonlinearitatea ecuaţiilor care descriu 
fenomene haotice. O listă incompletă a acestor ecuații este: ecuația Boltzmann, ecuația 
Ishimori, ecuația Korteweg-de Vries, ecuația Landau-Lifshitz-Gilbert, ecuația Navier-
Stokes, și multe altele. Această disproporționalitate între date inițiale și rezultate creează 
o situație dificilă analitic, una care este complicată din punct de vedere algebric și numeric 
– totuși, studiul ecuațiilor care sunt atât simple cât și haotice poate oferi conexiuni 
folositoare între noțiunea de complexitate algebrică și haos. Asemenea conexiuni pot fi 
folosite pentru a determina cea mai simplă funcție haotică posibilă, care poate fi folosită 
drept un “operator haotic” pentru multe tipuri de funcții haotice sau non-haotice, astfel 
reducând problema haosului strict la o dimensiune algebrică. 
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